Fluctuation in entanglement positions via elastic slip-links.
نویسندگان
چکیده
We consider the spatiotemporal fluctuation of slip-link positions via the implementation of elastic slip-links. The level of description is similar to our previously proposed slip-link model, wherein we use the entanglement position in space as dynamic variables, and the number of Kuhn steps between entanglements. However, since it is a mean-field, single-chain description it has some relevance to the slip-spring simulations of Likhtman, and the phantom chain model for cross-linked networks. It might also provide a connection between slip-links and tubes. Two implementations are possible, depending on whether or not the slip-links are allowed to pass through one another. If a boundary condition on the dynamics preventing such passage is imposed, then the plateau modulus is unchanged from perfectly rigid slip-links. Only the dynamics is changed. On the other hand, for phantom slip-links the distribution of the number of entanglements changes from Poisson. Furthermore, requiring normalization of the distribution function sets a constraint on how loose the virtual springs for the elastic slip-link are. These restrictions appear to be in agreement with parameter values used for the slip-spring simulations, although nonphantom slip-links were used there. The results are completely analogous to what was found by James and Guth for ideal elastic networks, whose derivation is repeated here. Our earlier rigid slip-link model is recovered as a limiting case.
منابع مشابه
Microscopic Description of Entanglements in Polyethylene Networks and Melts: Strong, Weak, Pairwise, and Collective Attributes
We present atomistic molecular dynamics simulations of two Polyethylene systems where all entanglements are trapped: a perfect network, and a melt with grafted chain ends. We examine microscopically at what level topological constraints can be considered as a collective entanglement effect, as in tube model theories, or as certain pairwise uncrossability interactions, as in slip-link models. A ...
متن کاملDerivation of free energy expressions for tube models from coarse-grained slip-link models.
We present the free energy of a single-chain mean-field model for polymer melt dynamics, which uses a continuous (tube-like) approximation to the discrete entanglements with surrounding chains, but, in contrast to previous tube models, includes fluctuations in the number density of Kuhn steps along the primitive path and in the degree of entanglement. The free energy is obtained from that of th...
متن کاملMonte Carlo simulations of free chains in end-linked polymer networks
The structural properties of end-linked polymer networks prepared in the presence of inert linear chain solvent were investigated with Monte Carlo simulations using the three-dimensional bond fluctuation model on a simple cubic lattice. Networks of 50-mer precursor chains were prepared in a solvent of 50-mer inert linear chains with a series of concentrations and two ratios, r, of cross-link si...
متن کاملEntanglement of an Atom and Its Spontaneous Emission Fields via Spontaneously Generated Coherence
The entanglement between a ?-type three-level atom and its spontaneous emission fields is investigated. The effect of spontaneously generated coherence (SGC) on entanglement between the atom and its spontaneous emission fields is then discussed. We find that in the presence of SGC the entanglement between the atom and its spontaneous emission fields is completely phase dependent, while in absen...
متن کاملExistence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition
We study a nonlinear, moving boundary fluid-structure interaction (FSI) problem between an incompressible, viscous Newtonian fluid, modeled by the 2D Navier-Stokes equations, and an elastic structure modeled by the shell or plate equations. The fluid and structure are coupled via the Navier slip boundary condition and balance of contact forces at the fluid-structure interface. The slip boundary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 132 7 شماره
صفحات -
تاریخ انتشار 2010